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––––––––––––––––– 

	 Several authors have treated regular systems of  points, regular divisions of  
the plane, and so on – in short, the analog of  crystallographic symmetry in the 
plane. To my knowledge however two closely related topics of  some interest have 
not yet been addressed: 
	 1. The classification of  the symmetries from the group-theoretical point of  
view, on which Schönflies’s investigations and textbook are based. 
	 2. The importance of  these symmetries for art and art history; for the topic is 
really the symmetry of  ornaments arranged periodically in the plane, such as textile 
and wallpaper patterns, parquetry, etc., which everyone is familiar with. 
	 One can regard the symmetries of  a “wallpaper pattern” arranged in the 
plane in two ways. One considers either: 

1. motions of  the plane in itself  and reflections in mirror and glide-mirror 
planes perpendicular to it (an “opaque” plane), 

2. motions of  the plane in space (a “transparent” plane), 
namely, such motions and reflections as bring the wallpaper pattern into alignment 
with itself. The first way is perhaps in many respects more natural; I use the second 
because of  several conveniences. 
	 The aligning motions of  the wallpaper pattern can be one of  four types:                   
1. Translation parallel to the plane.  2. Rotation around an axis perpendicular to 
the plane that cuts the plane in the center of  rotation.  3. A flip (rotation of  180°) 
around a flip axis lying in the plane.  4. A screw motion with a rotational compo-
nent of  180° around a glide axis lying in the plane. 
	 The totality of  the aligning motions of  the wallpaper pattern form its group. 
All of  the translations contained in the group are generated by two independent, 
therefore not parallel, translations: in this there is no difference between the groups. 
The geometric shape of  the lattice generated by the translations can however vary: 
the fundamental region can be a general parallelogram, a rectangle, a rhombus, a 
square, or be made up of  two equilateral triangles; by this classification criterion 
there are thus five types of  patterns. 
	 If  we consider the rotations amongst the aligning motions, we find differ-
ences between the groups. The rotational centers can, as is well known, only be 2-, 
3-, 4- or 6-fold, and they can also combine with flips; thus, by the implied classifica-
tion criterion, we find ten classes (which correspond to the 32 crystal classes). I de-
note them with 



	 	 	 	 C1,	 C2,	 C3,	 C4,	 C6, 
	 	 	 	 D1,	 D2,	 D3,	 D4,	 D6. 
	 C1 means that only translations occur, D1 means a single flip; for n ≥ 2, Cn 
means the cyclic, Dn the dihedral group with an n-fold axis perpendicular to the 
plane. 
	 Finally, one can choose the structure of  the group as the classification criteri-
on. Here only the types and relationships of  the symmetry elements play a role; the 
metric specialization of  the translational subgroup (to one of  the five fundamental 
regions) only comes so far into view as is required by the other symmetry elements. 
	 I found that only 17 groups with different structures exist in the plane. 
	 Only one group belongs to each of  the classes C1, C2, C3, C4, C6. 
	 3 groups belong to the class D1: 
	 	 D1ff: fundamental region rectangle, only flip axes; 
	 	 D1gg:  	 	 ″          	      ″            ″     glide axes; 
	 	 D1fg:  	          	″       	           rhombus, alternating flip and glide axes. 
	 4 groups belong to the class D2: 
	 a) with rectangular fundamental region: 
	 	 D2ffff: only flip axes parallel to both rectangle sides; 
	 	 D2gggg:  ″    glide axes    ″             ″    	        ″            ; 
	 	 D2ffgg: flip axes parallel to one rectangle side, glide axes to the other. 
	 b) with rhombus as fundamental region: 
	 	 D2fgfg: alternating flip & glide axes parallel to both rhombus diagonals. 
	 2 groups belong to the class D4: 
	 	 D4*: flip axes through all 4-fold rotational centers; 
	 	 D4°:      ″             ″        no    ″                   ″ 
	 2 groups belong to the class D3: 
	 	 D3*: flip axes through all of  the 3-fold rotational centers; 
	 	 D3°:       ″             ″       ⅓     ″          ″                   ″ 
	 Only 1 group belongs to the class D6. 
	 In total: 5+3+4+2+2+1=17 groups in the plane. 
	 Let us compare the results with those in space: 
	 	 	 	 	   	   Plane		 	  Space 
	 	 	 Lattices	   	      5	 	 	     14 
	 	 	 Classes	 	    10	 	 	     32 
	 	 	 Groups	 	    17	 	 	   230 
	 To carry out the proof  of  the completeness of  the enumeration is, for some-
one familiar with Schönflies’s investigations and textbook, only an exercise. I do not 
set out my proof  here, as it does not appear sufficiently rounded to me. 





	 I give 17 ornament patterns to exemplify the 17 groups. For 4 groups, name-
ly for D2ffff, D4*, D3*, D6, the boundary of  the fundamental region is uniquely de-
termined, because it consists entirely of  flip axes. The figures for the other 13 
groups actually show the division of  the plane into fundamental regions, but in or-
der to obtain pleasing patterns a few border lines are omitted. The resulting figures 
are divisions of  the plane into congruent parts; the individual parts are not always 
fundamental regions, but rather combinations of  multiple fundamental regions, 
which, however, show especial symmetry. For example the single tile in the picture 
of  Cn is made up of  n fundamental regions, which lie around an n-fold rotational 
center in cyclic order, n = 1, 2, 3, 4, 6. In the picture of  D2ffgg, there are even in-
finitely many fundamental regions combined in one band; and so on. The figures 
for C1, C3, C4, D1gg are ad hoc inventions. In order to incorporate everyday exam-
ples, D1fg, D2fgfg, D2gggg are illustrated through the most ordinary brick and par-
quetry patterns. The other figures are schemata of  traditional ornaments of  diverse 
art-historical origin. 
	 Incidentally the study of  ornaments also supplies other mathematical prob-
lems. A particularly easy exercise is the following: to enumerate all the different 
symmetry structures of  a border (band, frieze); there are seven. That the mathe-
matical study of  ornaments also has some interest from the artistic point of  view, I 
will discuss elsewhere. 

Translated by Marius Kempe. 

Originally published as ‘Über die Analogie der Kristallsymmetrie in der Ebene’, Zeitschrift für 
Kristallographie, 1924, vol. 60, p. 278–282. Reprinted in Pólya’s Collected Papers, vol. IV, p. 248–252. 

Notes: 
1. Unbeknownst to Pólya, the wallpaper groups had already been classified by Fedorov in 1891. 
2. Throughout, I have replaced Pólya’s abbreviation k (for ‘Umklappung’) with f (‘flip’). 
3. The last sentence refers to a book Pólya planned but never finished, The Symmetry of  Ornament.


